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SHEATH NEAR A PLANE ELECTRODE BOUNDING A COLLISION-
LESS PLASMA IN A MAGNETIC FIELD

By Arthur W. Goldstein

SUMMARY

The entire plasma-sheath region is treated by a uniform method for an infi-
nite plane electrode that adjoins a semi~infinite plasma in an electrical field
normal to the electrode and a magnetic field parallel to the electrode. The ef-
fect of collisions is neglected in calculating the velocity distribution func-
tion. 3Both ions and electrons drift perpendicularly to the electric and magnetic
fields, but there is no current to the electrode. A self-consistent potential is
calculated, as well as the macroscopic properties of the electron and ion fluids,
density, velocity, and pressure tensor components, for a hydrogen plasma in ther-
mal equilibrium. An equilibrium velocity distribution and an isotropic pressure
tensor are shown to be established at a distance more than several times the
Larmor radius for each species; this minimal distance is reduced for ions in a
sheath of large electron surplus. If the plasma density is sufficiently low, the
entire transition region is electrically charged, whereas, near an anode in a
plasma of higher density, the charge extends only to several times the Debye dis-
tance. In the latter case, there 1s also an exterior region of charge neutrality
and potential disturbance that extends to several times the electron Larmor ra-
dius for a large anode potential and to several times the ion Larmor radilus for
other electrode potentials.

INTRODUCTION

When an electrode is placed in a neutral plasma, 1t tends to disturb the
plasma in a way that depends on the electrode potential and the conditions in the
plasma. Tonks and Langmuir (ref. 1) showed that the disturbance region may be
considered to be divided into a nonneutral region designated as the sheath and a
neutral plasma region with a disturbance potential. The purpose of this report
is to describe the structure of the steady-state condition of the entire distur-
bance region adjacent to an infinite plane electrode when a magnetic field exists
parallel to the electrode and when the density is sufficiently low that the ef-
fect of collisions can be neglected. It is expected that some insight will be
provided for the sclution of the technically significant case where collisions
and time variations occur.

A number of studies have dealt with the electrostatic probe and with the
sheath that determines the probe characteristics (see ref. 2 for an extensive
bibliography and discussion). The anode probe in a magnetic field is treated by



Bohm, Burhop, and Massey (ref. 3). This treatment is concerned only with the
neutral region exterior to the sheath and is appropriate only when the ion Larmor
radius 1s larger than the Debye radius. Bertotti (refs. 4 and 5) discusses the
probe in a magnetic field without detailed examination of the sheath other than
some general remarks, which are compared herein with the results of the present
calculations. The transition region considered herein includes both the region
of net electrical charge and the region of disturbance of electrical field by the
electrode.

The method used in this study is similar to that of Bernstein and Rabinowitz
(ref. 6) in that the entire disturbance region generated by the electrode without
a magnetic field is treated as a whole by means of the velocity distribution
function and by ignoring the effect of collisions. Hall (ref. 2) points out that
this method is suitable only for a probe of limited size, such as the spherical
or cylindrical ones considered by Bernstein and Rabinowitz, but is unsuitable for
a plane electrode, because a plane electrode that neutralizes impinging particles
does not permit the return of attracted particles to the plasma, so that near the
electrode the velocity distribution of the attracted species is one sided (no
particles proceed away from the electrode). This situation will also persist in-
definitely into a collisionless plasma since no mechanism is provided to effect
the transition from the one-sided to the full velocity distribution. In the case
of the spherical probe, the number of attracted particles that would strike the
probe so decreases with distance that a transition to a full distribution is ac-
complished without collisions.

In case there is a magnetic force field directed parallel to a plane elec-
trode (see fig. 1), a transition to an equilibrium distribution in the plasma is
possible without collisions because the motion of the particles normal to the
electrode is inhibited. In this situation, however, no electrode current is
possible; steady-state currents to the electrode are present only when there are
collisions. The effect of a very small collision rate cannot be ignored alto-
gether, because the effect of collisions is cumulative. If the collisions were
ignored entirely, the plasma would remain frozen in whatever velocity distribu-
tion might be initially imposed. If collisions occur so infrequently that the
orbit of the average particle is slowly altered, the motion might be calculated
over short periods of time and the slow changes ignored. After a long period of
time, the velocity and spatial distributions will have altered substantially
from the initial condition to an equilibrium distribution (except for the dis-
turbance created by the electrode).

The assumptions of the problem to be treated are the following:

(1) The plasma and the sheath are at such a low density that collisions have
a negligible effect on the velocity distribution at any instant of time. The
long~period effect of collisions 1s accounted for by assuming an equilibrium dis-
tribution far from the electrode.

(2) Changes with time are sufficiently slow that at any instant of time
there is approximately a steady-state condition.

(3) An infinite plane electrode exists in the z,x plane, and the problem
is one dimensional.
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(4) The electrode has absorbed or neutralized all particles that may have
impinged upon it.

(5) The plasma is neutral far from the electrode.
(6) The plasma as a whole does not drift parallel to the magnetic field.

(7) Thermal and drift velocities are small compared with the speed of light.

DERIVATION OF DISTRIBUTION FUNCTION
Equilibrium Distribution

The electric field E is directed normally to the electrode in the plane
y =0, 80 thgﬁ the electric potential ¢ is a function of y alone. The mag-
netic field B 1s taken to be in the direction 1, so that the magnetic poten-

tial A satisfies

A = Aly)ig

B = B(y)i,
dA

= - =1

dy z

(A1l symbols are defined in appendix A.) Then, in Gaussian units, the Maxwell
equations are

2
d
——% = 4nec2(ne - Zyny) (1)
dy
2
d“A —_ —
—5 = 4ne(neVx e - ZiniVy,1) (2)

where

1l'ﬂlé=—Bo
y

'y'—)OO

lim 2 = -Egq

yo ¥

and e 1is the proton charge, ¢ 1s the speed of light, n 1is the number density,
Z 1is the number of charges per ion, V& is the average velocity in the x-
direction, i,, i,, and i, are unit vectors, and the subscripts e and 1
refer to electrohs and ions, respectively. When a particle of mass m moves in



a steady electric field, the energy

€ = % mve + Zep (3a)

is constant. Of the generalized momenta,

Py =mvy + Zeh

X
Py = mVy (3b)
pz = mvz

py and p, are constants of motion. Then, for a given field, the velocity vy
is obtained from equation (3a) and the integrals of motion:

- ZeA)? + pé
(e - zeg) - Zx T IM 1 7 ()

m

2 _
vy =

B

For the steady, collisionless plasma the velocity distribution function £
depends on the variables y, vy, Vys and v,. (See appendix B for conditions
under which collisions can be ignored.) When these variables are transformed to
the variables €, p,, Vs and p,, the Boltzmann equation may be written

of a¢ . of 9Px 3r 4Py yr dvy
%€ @ " Op, @t ' opy at ' ovy a - °

Because &, py, and p, are constants of motion, the solution is
f= f(g/:px;pz)

This solution indicates that the particles will remain permanently in any initial
distribution. Actually, the collisions will cause a slow change to an equilib-
rium distribution; therefore, out of all the possible distributions, it is only
this one that is of interest here. TFor a subsystem of a plasma system, the sta-
tistical distribution function is an exponential function of a linear combination
of the additive integrals of motion (see ref. 7). For the present case, each
particle may be considered to be a subsystem because of the assumed weak interac-
tion between the particles; also, f is the statistical distribution function for
a single particle, and the integrals of motion are €&, py, and p,. The velocity
distribution function for particles in equilibrium and with & negligible colli-
sion rate is therefore

€ - apyx - Bp
f:Cexp(— }g Z)

where C, a, B, and 6 are constants. When the constants are evaluated, 6 is



found to be kT, where k 1s the Boltzmann constant and T is the temperature,
and a and B are the plasma drift velocities along the x and the =z axes,

respectively.

Effect of Electrode

The effect of the electrode 1s assumed to consist in the removal of all par-
ticles that would collide with it. Thus, for the sheath,

apy + Pp, - &€
f= CH(px:sz€>eXP( = o Z >

where H = O for particles that ccllide with the electrode and H = 1 other-
wise.

For any particle with assigned values of ¢&, Py, and p,, the value of v§

may be found at any point by equation (4); if v% < 0, the particle cannot reach
the point. Admissible particles are limited to those that cannot reach the elec-

trode, that is, those for which
0Sv30) =2e- = (p2+p2)
v m e X z

The electrode effect is then obtained by identifying H(U) with the Heaviside
function:

H(U) =0 for U< O
_ (5)
H(U) =1 for U>0
where

2 2

Py + P
UE—:)-CZ—Z—Zg

m m

The situation is actually somewhat more complex than condition (5) would in-
dicate, and consequently the present formulation has a restricted range of appli-
cation. The limitation on the class of fields for which the condition U > 0 is
an appropriate expression of the electrode effect is shown as follows. Equa-
tion (4) is first cast into the form

vE = ¥(y,p) - U (8)

where



2ZeA ZeA
‘U(Y;VX> = (VX = % + T)
Therefore,

lim ¥(y,py) = —o

y—)oo

If the function V(y,py) has a form as in figure 2(a), the particle will oscil-
late between the two points A and B as determined by the intersection of
W(Y,PX) with the level of U. It is clear that a particle with U =0 will
reach the electrode, and, if U < O, the particle will be sbsorbed or neutral-
ized. On the other hand, if the electric and magnetic potentials have appropri-
ate functional dependences on Yy, there may be such a value of py that a nega-
tive minimum is attained, such as at one of the points M (fig. 2(b)); then the
particle may oscillate between the points C and D with a negative value of
U and still not touch the electrode. {Smaller oscillation ranges are possible,
of course, with larger values of U.) Such cases are not suitable for use with
the condition U > 0. When B # O is assumed, the minimum of V¥(y,py) is at-
tained for the value of py such that

Py - m %% = ZeA

The extremum of ¢ 1s then

2
Wm=(@) +ELZ§-(A%%-O)

m m

and for U > O to be suitable, Y, must be greater than zero.

The distribution functions are now reformulated as functicons of velocity
rather than as functions of the integrals of motion. The following dimensionless
forms of the variables are used:

Ve - @
Uy = =
v
= 3
Yy =3
_ Vg - B
u, = S
— 2Zel
VZ(YJVx> = (ux - ) mna
. ZehA?
- ¢ 2m
= As,



where

The condition U > O for admissible particles is also incorporated in f, and in
terms of velocities it may be expressed as

Z2Zeh (
am

ux-w)-u§=v-u_§>o (7)

or, alternatively (A < 0, Z, = -1),

a;my

“2 . .
uXJi <@t <2ZieA>hY;l < ®p

Then
= _ o _ 4L Lo - ‘_ L A |
fe = CeH(ux,e a@)H(ve uy,e)exp 5 (o aeA) exp (u u uz)

Zie

f; = CyH(w; - ux,i)H(v§ - u§,i>ex - 5;—-(@ - ajA) exp[—(uﬁ +ug + uZ)]

Appending the conditions on u, ensures real limits *v for Uy In the plasma
at y - o, A~ -Byy, vz(vx’y) ,and H = 1. Since u§ + ul + ug is bounded,
there 1s the requirement that ¢ - agA and ¢ - ajA both be bounded in order

for f +to be nonzero and bounded. From this requirement and from the fact that

the electromagnetic field is independent of the species under consideration,

—> 00

and

With the definitions



and Gy defined so that

i1im G = O

y——)oo

2 2 2 2 z
fo = CeH(ux,e - we)H(ve - uy’e)exp(G)ex;)[-(uX,e tug o ¥ uz,e)]

- H 2 2 2 2
fy = CiH(w; - ux’l) ( uy,l)exp(—ZiTG)exp[}(gx,i +ug gt uz,i)]

and

It will be shown subsequently that o 1s the plasma drift velocity at y =
Therefore, aeG/e is the electric potential relative to the drifting plasma; it
is the potential disturbance created by the presence of the electrode and is
shown in figure 1 as the difference between the applied and the disturbed poten-
tial curves.

Moments of Distribution Function
The constants C, a, and f may be related to plasma properties external to

the sheath by evaluation of the moments of the velocity distribution functions.
In the limit y - », H =1, G = 0, and the plasma values of n, - N and

n; - N/Zi yield values for C. Also, lig U, = O 1is obtained, from which
lim V. = lim v = a. Then, finally, the constants 6., and 6; are related
e SL N e i e i

to the temperatures by the Boltzmann constant k by the relation 6 = kT.

The particle densities are calculated from zerc-order moments of the distri-

bution functions as
g
erf V€ dux
2
—Z e -
ny = Z 1 / erf vie Yx duX
=00

J

The other macroscopic averages are obtained from the higher moments. Of these
averages, the following simple results are noted:

a\z
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From the moments the macroscoplc properties are obtained:
Mass density:
Pe = Mallej P = MiN{5 Py = Pe T 24

Charge density:

Og = =€Ng; 04 = Zy€ny; 0 = 0, + 0y
Currents:
= Ee k3 . . =2 e
-en,vg = Jo = Je + acgiy; Jl +ao;i, = Zienlvl = Ji
where
N
Je = 'eaeneux,elx
2 a9
Ji = Zieainiux’il

jsje+ji=J+qgiX
J=Je+Ji

Pressure tensors for the lons and electrons are defined as

P =m(v - V(v - 7)

and yield components

Byy

px—y=py'x=:pzx_

The off-diagonal components are zero because the velocity distribution is an even

function of Uy, and u, and the integration is symmetrical. Also, ﬁ& and U,

Z zZ



are zero for the same reason.

SOLUTION OF EQUATIONS
Change of Variables

Aside from the effect of the electrode in changing the distribution func-
tions f from the Maxwell type, the distribution functions and the densities ng,
and ny depend on the disturbance potential G, which is therefore a more con-
venient variable for the problem than «¢. In addition, the cutoff parameters
and v depend on A 1n the combination given by

£ = - eh _ A B dy
meae  Boke Boke

where Lg (: aeme/eBO) is the Larmor radius of the electrons. Although < 1is
actually a dimensionless magnetic flux, the interpretation of ¢ as the approxi-
mate distance from the electrode in units of electron Larmor radius will be em-~
ployed as a more simple and descriptive concept. The system of equations (1)

and (2) may also be reduced from fourth to third order by changing the independ-
ent variable from y to (; the spatial dependence of the solution v(t) may
then be found by a subsequent integration. The equations are

z 2
_52_(2_> iz_Gz( _oﬁﬁ'ﬁ@) (&) - 2% % g (ix__) (10)
B% Le dgz C2 ZCE dg eN CE 202 dg eNae

2
a (BZDE _ (ae"’) (=) 2 ( ’x ) (11)
d 2.2 1" 2 eN eNa
g B e c c e
and
4 (y)_ Bobe
at \D/ "~ BD
where

D = ‘/__EEL___
4ﬁNe202

is the Debye distance, and Lg/D2 = SﬂNmeCZ/Bé. The method of integration of
equation (10) is described in appendix C.
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Partial Integration

Equation (11) may be integrated and the system of equations reduced to sec-
ond order. For this purpose the momentum equation for the mixture of ions and
electrons in a steady-state condition is utilized:

3 =3 e = <
p +0cE + jJXB

where
= - -
PmV = PeVe + P1V;
For the case at hand,
=z, -
Ve = 1xVe
=2 .=
v, = 1i_V,
i x i

=)

"

"
“

o
1
[
o

The relations

inserted into the momentum equation, when integrated, yleld

2
o +1_3_§__Ei=p+3_0(_93)
Yy = 8« Sncz 0 " 8x CZ

where
= + = N6 .1 + e
Po = Pp,i T Po,e = N9 7
and p is calculated from the sum of the second moments of the distribution

functions of the ions and the electrons, that is,
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In order to put this result in terms of the variables being used,

8e ag
E = ( ey EE)B

oy 2.2
Bole®e
eNoe = ——=—3
8nbcc
are employed, and the result is
2 .2
2 a 2 LI a n: —s —
B o _lZedG) | _, o, Ze’ejl 1 2 _& .2
z|* (c 2cd§> 1-=*3 22(1+ZT)-—Tuy,l N
BO c D= ¢

(13)

which replaces equation (11). Because E/B is approximately equal to the drift
velocity V,, equation (12) shows that the electrlc tension EZ/8nc? is always
small compared with the magnetic pressure B /Bﬂ The magnetic and kinetic pres-
sures are therefore always in balance, and the maximum change in magnetic pres-

sure is approximately equal to the kinetic pressure of the plasma Dg-.

RESULTS

The foregoing equations were integrated with consistent values for density
and current; the results of the calculations are given in figure 3 as curves of
the potential disturbance function G, the density ratios e/N and l/N and
the ion and electron pressure ratios pxx/PO and p /po plotted as functions
of ¢ (zy/Le). The pressure ratio pZZ/pO is 1nd1eated to be equal to n/N.
The calculations were made for Gy = *1 and 5, D/L = 100, 2, 0.5, and O, and
several values of a/c and a/c. Since the effects of o and a are Very

small, these values are not shown. In the sequence the curves for D/L =0,

Gy = *1 are omitted because they are very much like the curves for D/Le = 0.5.
The method of integration used was unsuitable for the cases D/L = 0.5, Gy = %35,
and no results were cobtained. Presumably these curves would be 51milar to the
curves for D/Le = 0, Gy = 5. Because the coefficlent of the highest derivative
is small in these cases, standard integration technlques are not applicable.

Also omitted is the curve for Gy = -5, D/L = Q. This curve violated condition
(7) over a considerable region, soO that the effect of the electrode is not accu-
rately stated in condition (5). The same violation occurred for Gy = -5,

D/Le = 0.5 but extended over a small region ({ < 4) where the density is low
and presumably the effect is not large.

Although o has an insignificant effect on the disturbance potential G,
its effect on the actual electric potential ¢ relative to the electrode can be
seen from the relations
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When &/ae is sufficiently large, the effect of the externally applied field
overshadows that of the disturbance field.

Isotropy and Equilibrium

All the plots show some region in which either the electron or the ion pres-
sure tensor is not isotropic. This deviation from isotropy of the pressure ten-
sor 1s a measure of the electrode effect, since it is caused by the selective re-
moval of particles with prohibited values of the momenta Py and Py normal to

the magnetic force lines and by the absence of such selection on the parallel
component py,. This same process causes the deviation of the velocity distribu-
tion function from the equilibrium (Maxwell) distribution and reduces the number
density below the equilibrium value NeG for electrons or (N/Z)e'ZTG for ions.
Consequently, the nonisotropy of the pressure tensor is considered a measure of
deviation from equilibrium. In all cases equilibrium is established at & dis-
tance of 4 to 5 Larmor radil appropriate to the speciles.

Pressure isotropy (equilibrium) of the repelled species is enhanced by a
large electrode potential. This phenomenon results from the variation of the
electrical field intensity (curvature of the @ curve). A uniform field has no
effect on ion collision with the anode, because a Lorentz transformation of the
electromagnetic field to a coordinate system moving with the loecal drif+t velocity
removes the electric field, and the ions orbit in circular paths of a size inde-
pendent of the field strength. If the electric field is nonuniform, it cannot be
eliminated by transformation; consequently, the orbital path is modified from the
circular shape in such a way that repelled particles require higher energy to
reach the electrode than in a uniform field. Thus, when the field strength is
highly nonuniform, a very small proportion of the population of the repelled spe-
cies is removed, and the distribution closely approximates the Maxwell distribu-
tion with an isotropic pressure tensor. The trend to equilibrium of electrons is
smaller than that of ions because of the reduced Larmor radius and the smaller
variation of electric field in the orbit. These characteristics may be observed
by comparing figures 3(a) to (d), where the sheath is calculated for various
electrode potentials. Figures 3(e) to (h) show & similar change in approach to
equilibrium.

Scale of Region of Potential Variation

The extent of the region in which the potential of electrical disturbance
varies substantially is shown by Bertotti (ref. 4) to be of the order of the sum
of the Debye distance and the Larmor radius of the attracted species, on the
basis that the electrode influences the density distribution of the attracted
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species to distances of the order of the Larmor radius, whereas the repelled spe-
cies is in equilibrium. The distance scale of Poisson's equation is the Debye
distance in that charge disturbances influence the potential as far as the Debye
distance; beyond this range shielding by other cherges takes place. All the cal-
culations substantiate this conclusion (fig. 3). There is an additional smaller
variation of potential well in a region much larger than this one in cases of
low-voltage anodes with weak magnetic fields (figs. 3(f) and (k)), where the
electrode potential is not sufficiently large to effect an equilibrium distribu-
tion of the repelled species (ions); nonisotropy of the ion pressure tensor indi-
cates this situation.

Regions of Neutrality and Charge

All calculations show the attainment of charge neutrality in regions farther
from the electrode than several times the Debye length D (y > =5D); cathode
sheaths in a weak magnetic field (figs. 3(g), (h), and (Jj)) exhibit only small
charges even closer to the electrode. Poisson's equation (eq. (10)) is directly
related to this situation in that the characteristic length for variation of po-
tential 1s the Debye length; for y > 5D the derivative is small and a solution
of the equation is the plaesma condition of neutrality (n, = Zng).

The potential variatlon in the neutral region may be correlated with the
Larmor radius and the electrode potential by consideration of equations (9) for
density, where K represents the integral factor:

)

e
N e

]

~

o
[

(14)

The integrals K are less than 1.0 by an amount that represents the fraction of
the population that has been removed by the electrode. This interpretation then
indicates that K —- 1 at a distance of several times the Larmor radius since
only the extremely high-energy particles in a Maxwell distribution could reach
the electrode and be removed. This distance will be taken to be 5L. At smaller
distances K - 1 also for a strongly repelled species. In general, K, > K; Te-
cause of the difference in Larmor radii, but the case of an anode with a large
potential is different in that K; =1 (except possibly for a very small region
near the electrode), and in this case Ke <K; =1 in the region y < SL,. The
neutrality condition

Ks
exp[(1 + 12)G] = =—
e
can be used with these interpretations to indicate when G > 0 (K; > Kg) or
G <0 (Ky <Kg)-

In weak plasmas the neutral condition is attained only for y > 5D > 5L;.
Neutrality thus implies K, =Ky =1 and, therefore, G = 0, which also implies

14



n, = Zn; = N; that is, the plasma is undisturbed altogether in a neutral region
(figs. 3(a) to (d)).

If the anode potential is large (GW S +5), K; = 1, and, therefore, when
D <Lg (dense plasma), then Ko < 1 in the region 5D <y < SLe. The neutrelity
condition then indicates that G > O (fig. 3(k)). For the region 5Lg <y,
=1 and G =0 in any neutral region for both medium and dense plasmas
(figs. 3(e) and (k)).

For the cases where G, = *1l or -5 the condition K; <Ko <1 and the neu-
trality condition yileld G < O where 3D <y <35L;. In the range y > 5L,
K: = K. = 1; here the neutrality condition indicates the absence of any electrode

1 e
disturbance at all (figs. 3(f) to (j)).

The anode sheaths exhibit stronger charges than the corresponding cathode
sheaths (compare fig. 3(b) with (c), (e) with (h), (f) with (g), and (i) with
(3)). This effect is a consequence of the large Larmor radius of the ions, which
extends the region of ion population depletion by the electrode. 1In a region of
electron surplus near an anode, the ion depletion thus increases the sheath
charge, whereas near a cathode the densities of the two species are made more
nearly equal. The effect is large enough to effect a condition of approximate
neutrality in the inner region (y < 5D) of the sheath in weaker magnetic fields
(rigs. 3(g), (h), and (j)) where the ion Larmor radius is larger than the Debye
distance.

SUMMARY OF RESULTS

When collisions are ignored, calculations of the sheath between a plane
electrode and a hydrogen plasma in thermal equilibrium in the presence of a mag-
netic field parallel to the electrode show that

1. The dimensionless disturbance potential relative to the moving plasma,
the densities, and the pressure tensor components (ratio to undisturbed-plasma
value) are all independent of the plasme temperature and drift velocity; they de-
pend only on dimensionless flux (approximately the ratio of distance to Larmor
radius), ratio of Larmor radius to Debye distance, and ratio of electrode poten-
tial energy to thermal energy.

2. The electrode effect on veloclty distribution and pressure tensor compo-
nents extends to a distance of five times the Larmor radius, except that the
variation of electric fileld intensity (which is large with a substantially
charged sheath) results in a reduced electrode effect on the repelled specles;
this electrode effect is less pronounced with lons near anodes than with elec-
trons near cathodes.

3. The plasme condition of neutrality is not satisfied in the transition
region for rare plasmas (D > Li) nor in the region y < 3D near anodes In
medium-density plasmas (Le <D< Li), where D 1s the Debye distance, Lo 1is
the electron Larmor radius, Ly 1s the ion Larmor radius, and y 1s the distance
normal to the electrode. It is satisfied in all cases for y > 5D and approxi-
mately so for all locations near cathodes in medium or dense plasmas (D < Li)'
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4. In a region of neutrality the potential is always negative in a region
extending to approximately SL;, except that, if the anode potential 1s large
(five times the thermal energy), the potential is positive in the region

¥y < SLg.

Lewls Research Center
National Aeronautics and Space Adminlstration

Cleveland, Ohio, July 5, 1963
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APPENDIX A

SYMBCOLS
magnetic potentlal (B = -dA/dy; A(0) = 0)
ZkT/m = ~/268/m
magnetic fleld intensity
constant, approximation for -/A (see eq. (C3))
speed of light
Debye distance; D = VkTe/thtNezcz
electric fleld intensity
energy of partlcle
proton charge

Boltzmann distribution function
dimensionless potential relative to plasma; G = G + gL (¢ - ad)
e

correctlion to the approximation '~ G; g=G - T

electrode effect function; H = 1 for permlssible particles and H = 0O
for disallowed particles

unit vectors in direction of x, y, or 2 varlation
electric current relative to plasma; J = ] - aoWX
electrlc current relative to electrode

electrode effect on density depletion (eq. (14))
Boltzmann constant

Larmor radius of electrons or ions; L = a/wc

mess of particle

number density of electrons 1n plasma

number density of particles in sheath

17
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(Pyx * Pyy + Pyy)/3

components of generalilzed momentum vector

components of pressure tensor

right side of eq. (10) with o/eN omitted (see appendix C)
temperature of electrons or lons

time

(65 + s2)/s] - 2o

nondimensional veloclty components relative to plasma;

Uy = (VX = o,)/a; u‘y = Vy/a5 U, = (VZ = B)/&
velocity of particle

average veloclty of electrons or lons

Pe _ Pi

velocity of ion-electron mixture; ¥ = — 7. + — T«
¥ 2 'm Py © oy

coordinates

number of fundamental charge units per ion (Z, = -1)

constant (drift velocity of plasma, EO/BO)

constant (drift velocity in z-direction, assumed to be zero)
approximation for G 1in 1lterative process for finding G
-[(o/eN) + SIBED?/BZLE (see eq. (C3))

error in eq. (10) when G 1is replaced by T (see eq. (Cl))
-A/BOLe = -Ae/meae; { ~ y/Le

constant (shown to be kTe or kTy)

collision parameter (appendix B)

- (882 [B2D8) [3(o/eN) /36 + 35/3G] (eq. (C2))

electrode cutoff for wuy Iintegration; v = uf/a2
collision frequency per perticle

mass density of electrons or lons



)
™)

P mass density of electron-ion mixture; Py = Melg + myny
G,05,0; electric charge density of electron-ion mixture or of either component
T T,/T; = 6,/04
o electric potential function [@(0) = @, = 0; E = -dp/dy]
o7e #Px 72e2AC
v T(T)T
Wm stationary minimum value of ¢
w electrode cutoff for wu, integration; w = [p - ahA - (ZeAz/Zm)]/Aa
We cyclotron frequency; W, = eBO/me or ZeBo/mi
Subscripts:
e electrons
i ilons
W value at electrode (y = 0)
X,¥,% component appropriate to x-, y-, or zZ-axis direction
0 value in plasma (y = «)
Superscripts:

velocity average

vector

19



APPENDIX B

CONDITIONS FOR WHICH COLLISIONS CAN BE IGNORED

A limitation of the theory arises from the assumption that over a short pe-
riod of time the effect of collisions on the distribution functions is small.
Quantitatively this assumption is expressed by vcﬁnc << 1, where Vo is the
scattering collision frequency and w, 1is the cyclotron or Larmor frequency.

For consideration of order of magnitude, electron shielding alone is assumed, and
conditlons are calculated in the plasma rather than in the sheath. Because of
the large Larmor radius, ion-ion scattering gives the largest value of vc/ab.

Then, from reference 8 Vo i is obtained, from which the result for hydrogen is
2

1 >> Ve ~ 0.71 2 1836 1/2 EE.ES%JE
W, J. ‘ 3 DA
ii

()

where

5(kT)3/?
1/2
efcl(4nNelc?) /

The condition for ignoring collisions is

1/2
8rm ch L v
et =§zo.04( A )(—C) <<o.o4( ‘g )

5
Bo

which is equivalent to a minimum magnetic field intensity. This limitation is
very weak for high temperature and low density and very severe for low tempera-
ture and high density. At T = 1000° K and N = 1012 per cubic centimeter, for
example,

L

e
) < 2

20



APPENDIX C

METHOD OF INTEGRATTON

The system of equations (10) and (11) embodied difficulties peculiar to the
nonlinearity of the problem, the two-point boundary conditions, and the infinite
range of the independent variable. The method used was one of successive ap-
proximations with linearized approximations for the corrections. With equation
(10) written in shorter notation,

DFEFA% o g0 (%dc _a)f% Tx a0
2 42 ,2 eN T eN 2c dt ¢ c elNa c eN
Le BO dg e
a function T(f) is assumed to be an approximation for G({), and the dependence
of S on dG/dg is neglected because a2/c2 and aa/c2 are small. The cor-
rection g =G - T' is assumed small, so that variations in G will cause
changes in o and Jy, which can be approximated by

o(G,¢) = o(T,¢) + g@_g’)c}:r
J(G,¢) = J(T,¢) + g@%>@=r

If the error in the differential equation is € when I' 1is used,

2. 2
_ [Bole\lo(r,0) ar
€=- (BZDZ>[O et S<P’§)] Y

2
9—% =Ng + ¢ (c1)
ag

where

_ (BEENS /o >
A= - B2p2 R (éﬁ) % (c2)

When T(0) = G,, and TI(w) =0,

W

g(0) = g(w) =0

Explicit expressions for the derivatives are

2l



a J = - EE _ - 7 ZTE EEL T + j; iL + -§‘ _E
G \Ta. /™ T “,e m; N %1 TZEATN. T Yx,e T Ux,1

Because of the complicated form of the coefficient A, equation (Cl) is not
amenable to direct solution for a self-consistent electrical field. A method of
successive approximations was used, in which for each approximation a constant
value of A was assumed. Then the correction g is obtained from equation (Cl)
with the following result:

ebc : 2 -bx e-bg : 2 bx
G=g+T =5— (& - beT)e dx - —m— (5 - pT)e " ax
o 0
bt ®
e” 2 -bx —bg
=5 (& - b°T)e dx + Ge (c3)
0
where
b= -/
and

-<£L + S)BZDZ
5 = e 0
)

B"Le

For L, << D and the initial approximation T = Gwe-bc, convergence was very
rapid (three iterations), but convergence was slow for weak fields (L, = O(D)).
In these cases convergence was more rapid for large values of {; the rate of
convergence near the wall was improved by occasicnal use of values of A appro-
priate for smaller ¢, although the usual procedure was to use k==(l-+ZT)Le/D,
which is appropriate to large (. After each iteration for G, the function
BZ/Bg was reevaluated from equation (11), although equation (12) might just as
well have been used. This method was found to be unsuitable for values of

Gy > 10 or Gy < -10.

In the limiting case in which the plasma density is very large or the mag-
netic field weak, the ratio D/Le becomes vanishingly small. Then the differen-
tial equations (10) and (11) are simplified by igaoring the second derivative
terms. For this system there is the solution o =0 or n, = Zng, which is

22



known as the plasma equation. The plasma equation was checked by the scluticns
for the cases D/Le = 1/2, G, = 1, -1 by means of integration of the differen-
tial equation. The results showed a negligibly small net space charge.
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